i Please note:  

To view the current calendar, go to www.sfu.ca/calendar

Geographic Information Science Major

Bachelor of Science

The School of Computing Science and the Department of Geography offer a major leading to a bachelor of science degree.

Program Requirements

Lower Division Requirements

Students complete a total of 39-43 lower division units including all of

CMPT 225 - Data Structures and Programming (3)

Introduction to a variety of practical and important data structures and methods for implementation and for experimental and analytical evaluation. Topics include: stacks, queues and lists; search trees; hash tables and algorithms; efficient sorting; object-oriented programming; time and space efficiency analysis; and experimental evaluation. Prerequisite: MACM 101 and one of CMPT 125, 126 or 128; or CMPT 128 and approval as a Biomedical Engineering Major. Students with credit for CMPT 201 may not take this course for further credit. Quantitative.

GEOG 100 - Society, Space, Environment: Introducing Human Geography (3)

A survey of how humans shape their world, considered from spatial and environmental perspectives. Themes include population, culture, resources, livelihood, cities. Breadth-Social Sciences.

GEOG 111 - Earth Systems (3)

An introduction to landforms, climates, soils and vegetation; their origins, distributions, interrelationships and roles in the ecosystem. Laboratory work and field trips are included. Breadth-Science.

GEOG 253 - Introduction to Remote Sensing (3)

An introduction to the theory and practice of remote sensing, including the relevant physical processes, digital image processing and information extraction, and a review of remote sensing applications. Prerequisite: GEOG 100 and 111. Quantitative.

GEOG 255 - Geographical Information Science I (3)

A basic overview of Geographical Information Systems and Science; GIS software, hardware, data structures and models; spatial data, operations and algorithms; practical applications and limitations. Prerequisite: GEOG 100 or 111 or permission of instructor. Students with credit for GEOG 354 may not take this course for further credit. Quantitative.

MACM 101 - Discrete Mathematics I (3)

Introduction to counting, induction, automata theory, formal reasoning, modular arithmetic. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, 157. Quantitative/Breadth-Science.

MACM 201 - Discrete Mathematics II (3)

A continuation of MACM 101. Topics covered include graph theory, trees, inclusion-exclusion, generating functions, recurrence relations, and optimization and matching. Prerequisite: MACM 101. Quantitative.

and either both of

CMPT 120 - Introduction to Computing Science and Programming I (3)

An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a high-level language and be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode, data types and control structures, fundamental algorithms, computability and complexity, computer architecture, and history of computing science. Treatment is informal and programming is presented as a problem-solving tool. Students should consult with the self-evaluation on the School of Computing Science website to decide whether they should follow the CMPT 120/125 course sequence or enrol in CMPT 126. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 125, 126, 128 or CMPT 200 or higher may not take this course for further credit. Quantitative/Breadth-Science.

CMPT 125 - Introduction to Computing Science and Programming II (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have some backgrounds in computing science and programming. Intended for students who will major in computing science or a related program. Topics include: fundamental algorithms; elements of empirical and theoretical algorithmics; abstract data types and elementary data structures; basic object-oriented programming and software design; computation and computability; specification and program correctness; and history of computing science. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157) and CMPT 120. Students with credit for CMPT 126, 128, 135 or CMPT 200 or higher may not take for further credit. Quantitative.

or

CMPT 126 - Introduction to Computing Science and Programming (3)

A rigorous introduction to computing science and computer programming, suitable for students who already have substantial programming background. This course provides a condensed version of the two-course sequence of CMPT 120/125, with the primary focus on computing science and object oriented programming. Topics include: fundamental algorithms and problem solving; abstract data types and elementary data structures; basic object-oriented programming and software design; elements of empirical and theoretical algorithmics; computation and computability; specification and program correctness; and history of computing science. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157). Students with credit for CMPT 120, 125, 128, 130, 135 or higher may not take CMPT 126 for further credit. Quantitative/Breadth-Science.

and one of

GEOG 213 - Introduction to Geomorphology (3)

An examination of landforms, processes, laws, and theories of development; types and distributions. Prerequisite: GEOG 111 or EASC 101.

GEOG 214 - Weather and Climate (3)

An examination of the basic principles and processes governing the Earth's weather and climate. Topics include: radiation, greenhouse effect, clouds, precipitation, atmospheric circulation, mid-latitude cyclones, tropical storms, climate change. Prerequisite: GEOG 111. Quantitative.

GEOG 215 - Biogeography (3)

An examination of the abiotic and biotic factors that control the distribution and development of plant communities, including climatic and geological change. Prerequisite: GEOG 111. Students with credit for BISC 204 may not take this course for further credit.

GEOG 221 - Economic Geography (3)

The basic concepts of economic geography, involving consideration of the spatial organization and development of economic and resource based systems. Prerequisite: GEOG 100.

GEOG 241 - Social Geography (3)

Systematic consideration of the spatial and environmental bases of societies, in historical and cultural perspective. Prerequisite: GEOG 100.

GEOG 261 - Introduction to Urban Geography (3)

This course will introduce basic concepts in the study of urban geography by systematically identifying and examining major components of urban structure. Prerequisite: GEOG 100 or 102 or 30 units. Breadth-Social Sciences.

and one of

GEOG 251 - Quantitative Geography (3)

An introduction to basic quantitative methods and software for the solution of geographic problems. Topics include spatial data measurements, central tendency measures, simple probability theory and distributions, inferential methods, and correlation analysis. Prerequisite: GEOG 100 or 221 or 241; and 111. Quantitative.

STAT 270 - Introduction to Probability and Statistics (3)

Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Corequisite: MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Quantitative. Prerequisite: COREQ-MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Equivalent Courses: STAT102 STAT103 STAT201 STAT203 STAT301. Quantitative.

and one of

MATH 150 - Calculus I with Review (4)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B-, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.

MATH 151 - Calculus I (3)

Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of Differentiation including extrema, curve sketching, related rates, Newton's method. Antiderivatives and applications. Conic sections, polar coordinates, parametric curves. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.

MATH 154 - Calculus I for the Biological Sciences (3)

Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.

MATH 157 - Calculus I for the Social Sciences (3)

Designed for students specializing in business or the social sciences. Topics include: limits, growth rate and the derivative; logarithmic exponential and trigonometric functions and their application to business, economics, optimization and approximation methods; functions of several variables. Prerequisite: Pre-Calculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 154 may not take MATH 157 for further credit. Quantitative.

and one of

MATH 152 - Calculus II (3)

Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. First-order separable differential equations. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.

MATH 155 - Calculus II for the Biological Sciences (3)

Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes. Prerequisite: MATH 150, 151 or 154; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.

MATH 158 - Calculus II for the Social Sciences (3)

Theory of integration and its applications; introduction to multivariable calculus with emphasis on partial derivatives and their applications; introduction to differential equations with emphasis on some special first-order equations and their applications to economics and social sciences; continuous probability models; sequences and series. Prerequisite: MATH 150 or 151 or 154 or 157. Students with credit for MATH 152 or 155 may not take MATH 158 for further credit. Quantitative.

and one of

MATH 232 - Applied Linear Algebra (3)

Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.

MATH 240 - Algebra I: Linear Algebra (3)

Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphais and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.

† with a grade of B+ or better and permission of the School of Computing Science

Upper Division Requirements

Students complete a total of 45 upper division units including all of

CMPT 307 - Data Structures and Algorithms (3)

Analysis and design of data structures for lists, sets, trees, dictionaries, and priority queues. A selection of topics chosen from sorting, memory management, graphs and graph algorithms. Prerequisite: CMPT 225, MACM 201, MATH 151 (or MATH 150), and MATH 232 or 240.

CMPT 354 - Database Systems I (3)

Logical representations of data records. Data models. Studies of some popular file and database systems. Document retrieval. Other related issues such as database administration, data dictionary and security. Prerequisite: CMPT 225, MACM 101.

CMPT 361 - Introduction to Computer Graphics (3)

This course provides an introduction to the fundamentals of computer graphics. Topics include graphics display and interaction hardware, basic algorithms for 2D primitives, anti-aliasing, 2D and 3D geometrical transformations, 3D projections/viewing, Polygonal and hierarchical models, hidden-surface removal, basic rendering techniques (color, shading, raytracing, radiosity), and interaction techniques. Prerequisite: CMPT 225 and MATH 232 or 240.

and one of

CMPT 300 - Operating Systems I (3)

This course aims to give the student an understanding of what a modern operating system is, and the services it provides. It also discusses some basic issues in operating systems and provides solutions. Topics include multiprogramming, process management, memory management, and file systems. Prerequisite: CMPT 225 and MACM 101.

CMPT 363 - User Interface Design (3)

This course provides a comprehensive study of user interface design. Topics include: goals and principles of UI design (systems engineering and human factors), historical perspective, current paradigms (widget-based, mental model, graphic design, ergonomics, metaphor, constructivist/iterative approach, and visual languages) and their evaluation, existing tools and packages (dialogue models, event-based systems, prototyping), future paradigms, and the social impact of UI. Prerequisite: CMPT 225.

CMPT 371 - Data Communications and Networking (3)

Data communication fundamentals (data types, rates, and transmission media). Network architectures for local and wide areas. Communications protocols suitable for various architectures. ISO protocols and internetworking. Performance analysis under various loadings and channel error rates. Prerequisite: CMPT 225, CMPT/ENSC 150 and MATH 151 (MATH 150). MATH 154 or 157 with a grade of at least B+ may be substituted for MATH 151 (MATH 150).

CMPT 384 - Symbolic Computing (3)

This course considers modelling and programming techniques appropriate for symbolic data domains such as mathematical expressions, logical formulas, grammars and programming languages. Topics include recursive and functional programming style, grammar-based data abstraction, simplification and reduction transformations, conversions to canonical form, environment data structures and interpreters, metaprogramming, pattern matching and theorem proving. Prerequisite: CMPT 225; MACM 101.

and three of

GEOG 351 - Multimedia Cartography (4)

Elements of cartographic analysis, design and visualization, with an emphasis on digital mapping, animation techniques, cartographic software and internet mapping. Prerequisite: GEOG 255. Quantitative.

GEOG 352 - Spatial Analysis (4)

Advanced quantitative techniques for spatial analysis of geographic data and patterns. Topics include geostatistics, spatial interpolation, autocorrelation, kriging, and their use in geographic problem solving with spatial analysis software. Prerequisite: GEOG 251 or one of STAT 101, 201, 203 (formerly 103), or 270. Quantitative.

GEOG 353 - Advanced Remote Sensing (4)

Advanced remote sensing principles and techniques, including physics-based modeling, advanced classifiers, automated data processing, and integration of ancillary data products. Prerequisite: GEOG 253. Quantitative.

GEOG 355 - Geographical Information Science II (4)

An examination of technical components of GIS. Topics include spatial representations, generalization and data management; computational algebra and set theory; digital surfaces and terrain models. Prerequisite: GEOG 255. Quantitative.

GEOG 356 - 3D Geovisualization (4)

3D geovisualization methods, concepts and theory. Bridges conventional geographic visualization with emerging 3D methods. Emphasizes user-centered design and cognitive implications. Prerequisite: GEOG 255.

and two of

CMPT 412 - Computational Vision (3)

Computational approaches to image understanding will be discussed in relation to theories about the operation of the human visual system and with respect to practical applications in robotics. Topics will include edge detection, shape from shading, stereopsis, optical flow, Fourier methods, gradient space, three-dimensional object representation and constraint satisfaction. Prerequisite: MATH 152, and nine units in Computing upper division courses or permission of the instructor.

CMPT 454 - Database Systems II (3)

An advanced course on database systems which covers crash recovery, concurrency control, transaction processing, distributed database systems as the core material and a set of selected topics based on the new developments and research interests, such as object-oriented data models and systems, extended relational systems, deductive database systems, and security and integrity. Prerequisite: CMPT 300 and 354.

CMPT 461 - Image Synthesis (3)

Covers advanced topics and techniques in computer graphics with a focus on image synthesis. Topics include photorealistic rendering, advanced ray tracing, Monte Carlo methods, photon maps, radiosity, light fields, participating media, as well as tone reproduction. Prerequisite: CMPT 361, MACM 201 and 316. Students with credit for CMPT 451 may not take this course for further credit.

CMPT 470 - Web-based Information Systems (3)

This course examines: two-tier/multi-tier client/server architectures; the architecture of a Web-based information system; web servers/browser; programming/scripting tools for clients and servers; database access; transport of programming objects; messaging systems; security; and applications (such as e-commerce and on-line learning). Prerequisite: CMPT 354.

and two of

GEOG 451 - Spatial Modeling (4)

Spatial models for the representation and simulation of physical, human and environmental processes. GIS and spatial analysis software are used in the laboratory for model development, from problem definition and solution to visualization. Prerequisite: GEOG 251 or one of STAT 101, 201, 203 (formerly 103), or 270; one of GEOG 351, 352, 353, 355 or 356. Quantitative.

GEOG 453W - Theoretical and Applied Remote Sensing (4)

Examination of advanced topics in remote sensing, including calibration /validation, spatial scale, data fusion, and the role of remote sensing in a spatial wor1d. Students will work on independent projects applying remote sensing in their area of interest. Prerequisite: GEOG 352 and 353. Writing/Quantitative.

GEOG 455 - Theoretical and Applied GIS (4)

A critical examination of advanced topics in GIS, such as: boundary definition, expert systems and artificial intelligence, error and uncertainty, and scale in a digital context. Examines social applications and the roles of GIS in society. Students will design original projects, including data acquisition, analysis, and web site development. Prerequisite: GEOG 355 and pre- or co-requisite GEOG 352. Students with credit for GEOG 452 may not take this course for further credit. Quantitative.

GEOG 457 - Geovisualization Interfaces (4)

The concepts, theories, and technology behind interactive and immersive interface technologies used for geospatial visualization. Applications and implications for GIScience and spatial knowledge acquisition. Combines GIScience, spatial cognition, and virtual environments/interface research perspectives. Prerequisite: GEOG 351 and 356 (or permission of instructor). Students with credit for GEOG 457 (STT) Geospatial Virtual Environments in fall 2005 or fall 2006 may not take this course for further credit.

and four additional upper division units in physical or human geography. Students should consult with the program advisor when choosing these units

and three additional upper division units in CMPT or MACM courses.

Writing, Quantitative, and Breadth Requirements

Students admitted to Simon Fraser University beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See Writing, Quantitative, and Breadth Requirements for university-wide information.

WQB Graduation Requirements

A grade of C- or better is required to earn W, Q or B credit

Requirement

Units

Notes
W - Writing

6

Must include at least one upper division course, taken at Simon Fraser University within the student’s major subject
Q - Quantitative

6

Q courses may be lower or upper division
B - Breadth

18

Designated Breadth Must be outside the student’s major subject, and may be lower or upper division
6 units Social Sciences: B-Soc
6 units Humanities: B-Hum
6 units Sciences: B-Sci

6

Additional Breadth 6 units outside the student’s major subject (may or may not be B-designated courses, and will likely help fulfil individual degree program requirements)

Back to Top

Residency Requirements and Transfer Credit

The University’s residency requirement stipulates that, in most cases, total transfer and course challenge credit may not exceed 60 units, and may not include more than 15 as upper division work.

Elective Courses

In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.

For calendar technical problems or errors, contact calendar-sfu@sfu.ca | Calendar Changes and Corrections